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ABSTRACT
One of the main challenges in realizing dialog systems is adapt-
ing to a user’s sentiment state in real time. Large-scale language
models, such as BERT, have achieved excellent performance in sen-
timent estimation; however, the use of only linguistic information
from user utterances in sentiment estimation still has limitations.
In fact, self-reported sentiment is not necessarily expressed by user
utterances. To mitigate the issue that the true sentiment state is
not expressed as observable signals, psychophysiology and affec-
tive computing studies have focused on physiological signals that
capture involuntary changes related to emotions. We address this
problem by efficiently introducing time-series physiological signals
into a state-of-the-art language model to develop an adaptive dialog
system. Compared with linguistic models based on BERT repre-
sentations, physiological long short-term memory (LSTM) models
based on our proposed physiological signal processing method have
competitive performance. Moreover, we extend our physiological
signal processing method to the Transformer language model and
propose the Time-series Physiological Transformer (TPTr), which
captures sentiment changes based on both linguistic and physio-
logical information. In ensemble models, our proposed methods
significantly outperform the previous best result (𝑝 < 0.05).
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Figure 1: Example of capturing self-sentiment changes by
using linguistic information and physiological signals at
the exchange level. The user token sequences “not/too/bad”
include both neutral and positive sentiments. However, the
true self-sentiment in his or her mind is “bored” (tentative
example). This masked negative sentiment is accompanied
by reduced arousal levels and would be captured by time-
series physiological signals.

1 INTRODUCTION
The development of an adaptive dialog system that can recognize a
user’s state in real time is necessary to ensure enjoyable conversa-
tions in human-agent interactions. During a chat dialog, the system
should behave according to the real-time state of the user. For ex-
ample, if a user is bored with the current topic, the system should
explore other topics, like human behavior. However, there are sev-
eral reasons why this task is challenging. For example, self-reported
sentiment (hereafter referred to as self-sentiment) cannot necessar-
ily be expressed with the linguistic information obtained from user
utterances. Users may mask their self-sentiment in their mind and
not express their true sentiment as an utterance or behavior due to
their emotional intelligence [18].

Peripheral physiological signals have been investigated in psy-
chophysiology and affective computing [20]. These signals can
potentially reflect emotional changes by capturing physiological
changes in the autonomic nervous system (ANS). For example, a
faster phasic component in the electrodermal activity (EDA), which
is derived from the activity of the sweat glands, can be used to
detect emotional arousal [5, 13]. Since the ANS is involuntary, i.e.,
it cannot be controlled consciously, physiological changes during
dialog are difficult to mask. Therefore, physiological signals may
be suitable for capturing self-sentiment changes that cannot be
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represented by linguistic information in user utterances and can
function as complementary information.

However, investigations into the effectiveness of time-series
physiological signals for estimating self-sentiment during dialog
exchanges have been limited. Most studies on the use of physiolog-
ical signals to estimate emotion/sentiment have induced emotional
stress with visual stimuli over a relatively long time period (sev-
eral minutes). Thus, there is a need to investigate whether signals
detected in shorter time periods (approximately 10 seconds) are
effective for online emotion/sentiment estimation.

In addition, although it is assumed that short-time physiologi-
cal signals can complement spoken linguistic information in self-
sentiment detection, there have been no studies that show an effec-
tive method for combining time-series physiological signals with
token sequences represented by state-of-the-art (SOTA) language
models, such as the Bidirectional Encoder Representations from
Transformers (BERT) model [6]. Thus, the exploration of effective
methods for fusing physiological signals and token representations
is valuable for developing adaptive dialog systems.

The aforementioned issues and the approach presented in this
study are summarized in Fig. 1. An “exchange” is defined as a
segment that begins at the start of a system utterance and ends at the
start of the next system utterance. In this case, a model based solely
on user token sequences is insufficient for estimating self-sentiment.
We expect that time-series physiological signals could be used to
capture self-sentiment changes that are not expressed in linguistic
information, and a time-series model that combines physiological
signals and language representations can improve the sentiment
estimation performance, as these data are complementary.

In this study, we propose an effective method for processing
physiological signals and combine this method with a language
model. We focus on linguistic information and physiological signals
since the models based on BERT representations or physiological
signal had dominant performance compared to audiovisual models
(described in Section 5.1). The contributions of our work are as
follows:

• We propose a time-series physiological signal processing
method for exchange-level sentiment estimation. The mod-
els based on the time-series data of the EDA phasic com-
ponent capture short-time sentiment changes during ex-
changes, showing competitive performance to a linguistic
model based on SOTA computational representations, i.e.,
BERT representations (Section 5.1).

• We introduce the Time-series Physiological Transformer
(TPTr), which combines time-series physiological signals
with BERT representations to capture short-time sentiment
changes based on both textual aspects and physiological
changes in the user (Section 5.2). As a result, our proposed
ensemble model outperforms the previously reported best
result.

• Our proposed model is extended and validated by using a
variety of physiological signals, including the blood volume
pulse (BVP). The performance is further improved with the
ensemble method, as shown in Section 5.3.

2 RELATEDWORKS
This section specifically focuses on research related to the Trans-
former language model and multimodal models.

Text-based approaches are critical in sentiment analysis, and
neural network models such as LSTM are widely used [30]. How-
ever, the Transformer model, which was developed by [28], has
become the de facto standard and most used language model. The
best Transformer-based model is BERT [6], which achieved numer-
ous successes with sentiment estimation tasks with datasets such
as the Stanford Sentiment Treebank (SST-2) [25]. When BERT is
pretrained with a large-scale dataset, representations can be ex-
tracted from text data (referred to as BERT representations), and
BERT representations can be used as input feature vectors in other
architectures. This method allows BERT representations to be easily
combined with audiovisual features and is often used in multimodal
sentiment analysis.

Although several Transformer-based multimodal models for af-
fective computing and sentiment analysis have recently been pro-
posed [4, 8, 22], a Multimodal transformer called MulT was the
first model proposed in multimodal sentiment analysis research
[27]. Language, video and audio modalities, as well as sentiment
labels annotated by third parties, were used to demonstrate the
effectiveness of the proposed crossmodal attention model, which
latently adapts streams from one modality to another. Although
physiological signals were not included in these studies, it has
been suggested that Transformer-based models could capture cross-
modal attention between text and audiovisual signals. Multimodal
Adaptation Gate (MAG) was introduced in [22] and is applied to
the Transformer architecture of BERT/XLNet. The MAG allows to
shift the language-only position (representation) of the word to
the new position by injecting audio-visual information. The core
component of the MAG is a non-verbal displacement vector derived
from the audio and visual vectors with their respective gating vec-
tors. [8] proposed modality-invariant and -specific representations,
which project language, audio and visual modalities to two distinct
subspaces. The respective representations are stacked into a matrix,
and Transformer is used to perform a multi-headed self-attention
on the matrix.

Compared to linguistic and audiovisual modalities, there are
very few publicly available physiological signal datasets for emo-
tion/sentiment research. However, several datasets that include
physiological signals have been created while viewing emotional
videos [14, 19, 26] or conversations [15, 23]. In [15], a multimodal
human-agent dialog corpus that included linguistic, audiovisual,
and physiological information was created. The participants in-
teracted with an agent, and sentiment labels were retrospectively
annotated for each exchange by both the participants and a third
party. The collected nonverbal signals (audio, visual, and physio-
logical signals) in this dataset were used for sentiment estimation
with support vector machine or feedforward deep neural network
models, and the results showed that physiological signals, particu-
larly features based on SC signals, were useful for exchange-level
sentiment estimation, as reported by [11]. Our previous study was
extended by [12], which reported a comprehensive analysis of the
effectiveness of physiological signals in multimodal sentiment anal-
ysis. Since our proposal in this paper is an effective hybrid algorithm
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that combines physiological features and the Transformer language
model, our study differs considerably from these previous studies,
which used conventional neural networks [11, 12].

To the best of our knowledge, there is no publicly available
dataset that includes textual and physiological information during
dialog exchanges, except for [15]. As mentioned above, text-based
approaches are the most common sentiment analysis methods, and
multimodal language models using Transformer and BERT have
been proposed. Physiological signals are promising candidates for
capturing subtle sentiment changes that cannot be detected in the
speaker’s explicit information, i.e., text and audiovisual information.
Nevertheless, an effective method that combines a SOTA language
model and physiological signals has not yet been developed, most
likely because of dataset limitations.

We propose the use of physiological signals with a SOTA lan-
guage model to estimate sentiment during human-agent interac-
tions. The Hazumi1911 dataset [15], which is the only publicly
available dataset that includes time-series textual and physiological
information, enables us to evaluate the effectiveness of the combi-
nation of physiological signals and text. We propose a time-series
physiological signal processing method that effectively combines
physiological signals and token sequences of utterances. We show
that our proposed method is useful for exchange-level sentiment
estimation, and our results are comparable to those of a model based
on BERT representations. Then, we show how the time-series phys-
iological signals can be incorporated into a SOTA language model,
and proposed model were compared with the previously reported
best performing model.

3 PROPOSED METHODS
This section presents our proposed methods for incorporating time-
series physiological signals at the exchange level. In this study, the
physiological signals included the EDA, BVP, heart rate (HR) and
skin temperature (TEMP). The EDA is a measure of the electrical
activity in human skin and reflects sweat gland activity. The BVP
is based on spectral analyses of the skin (blood vessels) and re-
flects physiological changes in cardiovascular activity. In this study,
the raw EDA signal (skin conductance (SC), denoted as EDASC)
was decomposed into a fast phasic component (EDAfast) and a
tonic component (EDAtonic) with the same method as in [11]. In
Section 3.1, we describe a physiological signal processing method
for calculating fine-segmented physiological changes. Since each
physiological signal has a different sampling rate, a simple segmen-
tation and averaging method was applied. In Section 3.2, to evaluate
the effectiveness of the processed data, time-series machine learn-
ing models are introduced. Specifically, we propose a Time-series
Physiological Transformer (TPTr) model in which the encoder is
based on attention weights from the token representations and
corresponding physiological signals. We expect this encoder to cap-
ture sentiment changes by using both linguistic and physiological
information, as sentiment changes cannot be detected with only
linguistic information.

3.1 Time-Series Physiological Signal Processing
To roughly align physiological signals within the exchanges with
the token, a unit of language models, we divide each physiological

signal during each exchange by the number of tokens. Let one
exchange duration be 𝑠 , the sampling rate of the physiological
signal in Hz be ℎ, and the number of tokens in one exchange be 𝑛.
The number of samples per token𝑚 is determined by rounding 𝑠ℎ

𝑛
down to the nearest integer. Then, from the start of the exchange,
the raw sampling data per𝑚 are averaged in order (i.e.,𝑚 is the
variable window size). Thus, the physiological signal p in the 𝑖th
exchange is denoted as an 𝑛-dimensional vector:

p𝛼𝑖 = (𝑝𝛼𝑖1, . . . , 𝑝
𝛼
𝑖𝑛)

𝑇 (1)

where 𝛼 indicates the physiological submodality such as EDAfast,
EDAtonic, EDASC, BVP, HR, TEMP.

We note that our proposed preprocessing method is not the
strict word-level alignment method that has been proposed in prior
works [7, 29]. In contrast to acoustic signals, physiological signals
do not necessarily have a significant co-occurrence property with
the uttered words because the physiological changes may relate to
words spoken in the past or future. Thus, physiological signals are
not simply weighted with a specific token in this study. Rather, the
aim is to extract representations from fine segments of physiolog-
ical signals with token sequences, which could shift the original
representations at the exchange level. More details and examples of
our experiment are shown in Section 5.4.

3.2 Time-Series Modeling of Physiological
Signals

(1) Physiological LSTMs: The LSTM and bidirectional LSTMmod-
els are applied to validate whether our proposed time-series pre-
processing method performs comparably to models based on BERT
representations, which have deep bidirectionality [6]. An LSTM
[10] model based on physiological signals p𝑖 at time 𝑡 can be repre-
sented as

©«
f 𝑡
g𝑡
𝜾𝑡
o𝑡

ª®®®¬ =

©«
𝜎

tanh
𝜎

𝜎

ª®®®¬𝑊
(
p𝑡

h𝑡−1

)
c𝑡 = f 𝑡 ⊙ c𝑡−1 + g𝑡 ⊙ 𝜾𝑡

h𝑡 = o𝑡 ⊙ tanh(c𝑡 )

(2)

where f 𝑡 , 𝜾𝑡 and o𝑡 are the forget, input, and output gates, respec-
tively; 𝜎 is the sigmoid function;𝑊 is the weighting parameter; c𝑡
is the memory cell; h𝑡 is the hidden state; and ⊙ is the Hadamard
product. Note that the time 𝑡 corresponds to the number of tokens 𝑛,
as described in Section 3.1. p𝑡 is denoted as a vector in the above
equation: however, this variable corresponds to a scalar when the
selected physiological submodality is single.

After the preprocessing methods described in Section 3.1 were
carried out, the raw physiological data of each participant were nor-
malized by Z score normalization. In other words, we normalized
each feature over all the samples collected from a participant in the
training or testing data during preprocessing. Following this, zero
padding was performed since the token length of each exchange
differs. Then, the result was fed into the input layer of the LSTM
model. The final LSTM block outputs h𝑡 are connected to the final
output layer in a mode known as many-to-one, and finally, the
estimated values are obtained.
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Figure 2: Conventional Transformer [28] (left) architecture, CrossModal Transformer [27] architecture based on two modalities,
𝛽 and 𝛾 (CMTr, center), and our proposed Time-series Physiological Transformer (TPTr, right) architecture. In our proposed
model (right), exchange-level physiological signals and BERT representations derived from user and system utterances are
combined by applying the Transformer encoder. This model allows physiological information to be continuously linked to
linguistic information (performing attention with time-series physiological signal processing) and can capture physiological
aspects that cannot be detected with linguistic information alone. The number in the bracket indicates the dimension of the
corresponding matrix. For a detailed description of the Transformer and CMTr architectures, please see Section 4.1.

(2) Time-Series Physiological Transformer: After the effec-
tiveness of the physiological LSTM models were confirmed (as
described in Section 5.1), we extended our proposed method to
fuse time-series physiological signals with SOTA language repre-
sentations, i.e., BERT representations, by using the Transformer
encoder [28]. A summary of the proposed TPTr architecture is
shown in Fig. 2. Exchange-level BERT representations are extracted
with a pretrained BERT model1, which is represented as a matrix
of dimension R𝑛×𝑑 , where 𝑑 is hidden size of the BERT represen-
tations and 𝑛 is number of tokens. The time-series physiological
signal p𝛼 was turned into 𝑃𝛼 𝑛×𝑑∈ R

𝑖 𝑖
by repeating array along

the axis to match the dimension of the BERT representations. To
incorporate the time-series physiological signals into the linguistic
information, a dot-product attention mechanism [28] was applied.
The dot-product attention mechanism is composed of a query 𝑄 ,
a key 𝐾 , and a value 𝑉 . We consider the BERT representation in
the 𝑖th exchange as 𝑄𝑖 = 𝐾𝑖 = 𝑉𝑖 , where 𝑄𝑖 ∈ R𝑛×𝑑 . The dot
product between 𝑄𝑖 and 𝐾𝑇𝑖 is computed as the similarity to calcu-
late the attention weight. To combine the time-series physiological
signals with the BERT representations, we use the Hadamard prod-
uct between 𝑃𝛼

𝑖
and 𝑄𝑖 , denoted as 𝑄 ′

𝑖
. We hypothesize that this

modification may shift the attention weight and could provide rep-
resentations that differ from conventional BERT representations.
The output of the dot-product attention operation is:( )

𝑄 ′𝐾𝑇
Attention 𝛼 = softmax 𝑖 𝑖(𝑃 ,𝑄 ,𝑉𝑖 )𝑖 𝑖 , 𝐾𝑖 √ 𝑉𝑖 (3)

𝑑
√

where the scaling factor 𝑑 is used. The PEs are sinusoidal and
identical to the modules proposed in [28]:
1https://github.com/cl-tohoku/bert-japanese

𝑃𝐸 (𝑝𝑜𝑠,2𝑗 ) = 𝑠𝑖𝑛(𝑝𝑜𝑠/100002𝑗/𝑑 ) (4)

𝑃𝐸 (𝑝𝑜𝑠,2𝑗+1) = 𝑐𝑜𝑠 (𝑝𝑜𝑠/100002𝑗/𝑑 ) (5)

where 𝑝𝑜𝑠 is the position of the token and 𝑗 is the dimension of the
hidden layer. The PEs are added to 𝑄 ′, 𝐾𝑇

𝑖 𝑖
and 𝑉𝑖 to carry informa-

tion about the position of the tokens. The weighting parameters
𝑊𝑄 ′ ∈ R𝑛×𝑑 ,𝑊𝐾 ∈ R𝑛×𝑑 , and𝑊𝑉 ∈ R𝑛×𝑑 are also implemented.

Like [28], the Transformer encoder is composed of two sublay-
ers. The first sublayer is the aforementioned dot-product attention
mechanism, and the second sublayer is a fully connected feedfor-
ward neural network (FNN). Each sublayer has a skipping connec-
tion [9] and layer normalization [1], denoted as “Add” and “Norm”
in Fig. 2, respectively.

In summary, our proposed preprocessing method converts data,
allowing the model to combine physiological signals with BERT
representations, which are both represented as matrices during
each exchange. These representations are fed into the Transformer
model, with the token positions providing the attention weights,
thus allowing physiological changes to be considered during ex-
changes.

4 EXPERIMENTAL SETTINGS
This section describes the experimental settings for the evaluation
of our proposedmodel. One of the strengths of our proposedmethod
is that our method applies short-time episodes (approximately 10
seconds), which enables dialog systems to adaptively respond to
sentiment changes in the user in a timely manner. Only one pub-
licly available dataset includes both the time-series physiological
signals and linguistic information of the user at the exchange level:
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block was concatenated (64 units in total) and connected to the
final output layer. The other parameter settings of the CMTr and
Transformer models are identical.
(5) Time-Series Physiological Transformer (TPTr): The TPTr
and Transformer models have the same parameter settings. The
TPTr×3 model has three extended parallelized Transformer blocks.
The output of each TPTr×3 block was concatenated (96 units in
total) and connected to the final output layer. Other than these
settings, we use the same parameter settings in the Tr(×3), CMTr,
and TPTr(×3) models to facilitate a fair comparison.

For late fusion models, each higher intermediate layer in the
model is concatenated and connected to the output layer. For en-
semble models, the output values of each model were averaged
and used as the final estimated value. Late fusion and ensemble
methods are both widely used in multimodal machine learning [2].
In consideration of the computational cost, the maximum token
length was set as 64 in this study. The other hyperparameters were
set as follows: a learning rate of 0.001 with the Adam optimizer
and a batch size of 32. The FNN model and models other than the
FNN model were trained with 30 and 3 epochs, respectively. Mean
squared error was used as a loss function in all experiments. All
models were implemented in Keras with TensorFlow backend on
NVIDIA GeForce RTX 2060.

4.2 Evaluation Procedure
A leave-one-person-out cross-validation (LOPOCV) method was
used in our evaluation. In the LOPOCV method, the samples corre-
sponding to each exchange between a participant and the dialog
system were used as the test data, and the remaining samples of
the other twenty-five participants were used as the training data.
This procedure ensured that the test data of one participant were
completely excluded from the training dataset, thereby prevent-
ing leakage and overestimation. The mean absolute error (MAE)
and Pearson correlation coefficient (Corr) were calculated for each
evaluation. The average MAE and Corr values with the LOPOCV
method are reported. All experiments were performed three times
with random initializations, and the evaluation values were cal-
culated as the average value across the three repetitions. These
evaluation values were then compared among the models.

4.3 Dataset
The Hazumi1911 dataset [15], a multimodal human-agent dialog
corpus, was used in this study. The data were collected while partic-
ipants chatted with an agent that operated using the Wizard of Oz
method. Data from 26 of the participants and 2468 total exchanges
were used in our experiment, and the data are denoted in the same
manner as in [11]. The participants annotated the labels for each
exchange while watching videos of themselves after the experiment.
The labels were assigned as sentiment scores ranging from 1 (no
enjoyment of the dialog) to 7 (enjoyment of the dialog) and used in
regression tasks.

In the Hazumi1911 dataset, the participants’ utterances were
manually transcribed into text data. The language representations
were extracted by BERT, as described in Section 3. In addition, phys-
iological signals were recorded using an Empatica E4 wristband
(Empatica Inc., Cambridge, MA, USA) developed by Empatica Inc.

the Hazumi1911 dataset [15]. We use this dataset to evaluate our
proposed methods, and Section 4.3 summarizes the dataset. Sec-
tion 4.1 describes the models used as baselines for comparison, and
the evaluation procedure is described in Section 4.2.

4.1 Baselines and hyperparameters
As described in Section 3, the proposed time-series physiological sig-
nal processing method was evaluated by using the LSTM, BiLSTM,
or TPTr models as inputs. This subsection describes the baseline
models that were used for comparisons with our proposed method.
(1) Feedforward Neural Network (FNN): The FNN architecture
was used as one of our baselines. The FNN was composed of an
input layer, four fully connected layers with dropout in each layer,
and an output layer. The FNN has two lower intermediate layers
with 64 units and two higher intermediate layers with 32 units. The
dropout rate was set to 0.3. The ReLU function was used as the
activation function.
(2) Long Short-Term Memory Models (LSTMs): In the LSTM
model, the number of LSTM blocks was set to 3, with 64 hidden
units (in the BiLSTM model, the number of hidden units was set
to 128 in total). No dropout was applied. The activation functions
(sigmoid and hyperbolic tangent) are described in Section 3.2.
(3) Transformer (Tr): A conventional Transformer encoder [28]
was used as a baseline. This model used only linguistic information
(i.e., BERT representations) for sentiment estimation. As shown in
Fig. 2 (left), the Transformer encoder was composed of two sub-
layers. The first sublayer was a self-attention mechanism, and the
second sublayer was an FNN. Each sublayer had a skipping connec-
tion and layer normalization. The number of Transformer encoder
blocks and attention heads is 1. The dimensionality of the input
and output is 768, corresponding to the BERT model. The number
of units in the pointwise FNN is 128. The dropout rate was set
to 0.3. The Tr×3 model has three identical parallelized Transformer
blocks. FNNL+P (described in Section 4.3) was used to combine with
the Transformer models. CrossModal Transformer (CMTr) and our
proposed TPTr(×3) are described below.
(4) CrossModal Transformer (CMTr): The CMTr is a core com-
ponent of the MulT and was proposed in [27]. The MulT model
captures multimodal signals according to crossmodal attention and
achieves SOTA results in multimodal sentiment estimation. The
CMTr model applied crossmodal attention with linguistic, audio, or
video modalities, as reported in [27]. The two modalities 𝛽 and 𝛾 , as
denoted in Fig. 2 (center), correspond to linguistic, audio, or video
modalities. The transfer of information frommodality 𝛾 to modality
𝛽 is denoted as “𝛾 → 𝛽” in Fig. 2 (center). The CMTr model also
includes reverse attention, which is denoted as “𝛽 → 𝛾”, in which
information is assigned to another Transformer block, allowing
modality 𝛾 to receive information from modality 𝛽 . Thus, the atten-
tion direction is variable. On the other hand, our proposed TPTr
model applies attention with linguistic and physiological modalities
and has a fixed attention direction. Therefore, the CMTr and TPTr
models use different modalities, and the attention mechanism also
differs. For a fair comparison, we fuse BERT representations and
physiological signals when using the CMTr architecture in this
study. The CMTr model has two Transformer encoder blocks that
pass information as 𝛾 → 𝛽 and 𝛽 → 𝛾 . The output of each CMTr
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The E4 device is worn like a wristwatch; it causes neither distur-
bance nor discomfort during dialog and has been widely used in
affective computing research, such as in [17, 21, 31]. Thus, this
device is suitable for the evaluation of our proposed methods. The
EDA, BVP, HR and TEMP data were recorded at 4, 64, 1 and 4 Hz, re-
spectively. Each time-series physiological signal was preprocessed
as described in Section 3.1. Following [11], statistics such as the
mean, standard deviation and maximum values of the physiological
signals were used for comparisons with baseline models.

Acoustic and visual features were also extracted in the sameman-
ner as described in [12]. In brief, the INTERSPEECH 2009 Emotion
Challenge feature set (IS09) [24] was extracted from participant’s
utterances as acoustic features using OpenSMILE software2. A total
of 384 acoustic features were extracted. Based on the video data, fa-
cial landmarks near the eyes, mouth, and eyebrows were identified
with the OpenFace library [3], and the velocity and acceleration at
each point were calculated to use as facial features. Based on mo-
tion data of the hands, shoulders and head recorded with Microsoft
Kinect sensors, the velocity and acceleration were calculated to
use as motion features. In total, 86 visual features were extracted
from the facial expressions and motion activity. These acoustic and
visual features were used for model comparisons based on each
modality. Models based on each feature are as follows:
(1) FNNL: FNN model based on BERT representations
(2) FNNP: FNN model based on EDAfast statistics
(3) FNNA: FNN model based on acoustic features
(4) FNNV: FNN model based on visual features
(5) FNNL+P: FNNmodel based on BERT representations and EDAfast
statistics
(6) (Bi)LSTMP: (Bi)LSTM model based on time-series EDAfast sig-
nals

5 RESULTS AND DISCUSSION
First, we show the effectiveness of themodels based on our proposed
time-series physiological signal processing method. The physio-
logical LSTM and BiLSTM models perform better than the conven-
tional FNN model based on the statistics. Furthermore, ensembles
with linguistic and physiological modalities further improve the
estimation performance (Section 5.1). Second, a SOTA language
model, namely, the Transformer model, was used to combine the
time-series data derived from the physiological and linguistic infor-
mation. This novel approach captures representations that depend
on both token sequences and time-series physiological changes,
resulting in further performance improvement with the ensemble
model (Section 5.2). Third, to explore other effective time-series
physiological signals, the TPTr model based on various physio-
logical signals was evaluated in our proposed framework, and its
usefulness was demonstrated (Section 5.3). This analysis reveals
that the time-series BVP signal is another useful physiological sig-
nal for sentiment estimation. Fourth, to clarify the effect of the
physiological signals, the differences in the attention weights be-
tween the conventional Transformer and TPTr models was shown
(Section 5.4). Finally, a qualitative example of the estimation pattern
is shown in Section 5.5 to visualize sequential dynamic sentiment
changes and the behavior of each model.

2https://www.audeering.com/opensmile/

Table 1: Sentiment estimation results of physiological LSTM
models based on EDAfast. The sentiment estimation results of
the feedforward deep neural network (FNN) are also shown
as a baseline for comparison. For the FNN, the subscript “L”
represents models based on BERT representations; “P” rep-
resents models based on EDAfast; “L+P” represents models
based on both modalities; and “A” and “V” represent models
based on acoustic and visual features, respectively. The ex-
perimental results based on the model reported in [12] and
the results of our proposed models (ours) are also depicted.

Model MAE Corr
FNNL [12] 1.086 0.254
FNNP [12] 1.069 0.091
FNNA [12] 1.196 0.145Single model FNNV [12] 1.166 0.145
LSTMP (ours) 1.067 0.179
BiLSTMP (ours) 1.069 0.176
FNNL+P [12] 1.079 0.178

Late fusion model FNNL+P+LSTMP (ours) 1.062 0.184
FNNL+P+BiLSTMP (ours) 1.047 0.191
FNNL+P [12] 1.047 0.238

Ensemble model FNNL+P+LSTMP (ours) 1.041 0.250
FNNL+P+BiLSTMP (ours) 1.041 0.249

5.1 Performance of Physiological LSTM Models
Table 1 shows the regression performance of the unimodal FNN
models (FNNs trained with BERT representations, EDAfast statistics,
acoustic features and visual features are depicted as FNNL, FNNP,
FNNA and FNNV, respectively) using the model reported in [12]
(rows 2 to 5 in Table 1). Our proposed model, that is, the LSTM
models trained on time-series physiological signals (LSTMP and
BiLSTMP), are shown in rows 6 and 7 in Table 1. In the single model
results, our proposed physiological LSTM models have higher Corr
values than the conventional FNNP (rows 3, 6 and 7 in Table 1).
Although the FNNL model has the best Corr value of 0.254, the
physiological models (FNNP, LSTMP and BiLSTMP) have lower
MAEs than FNNL (1.086). The FNNs based on conventional acoustic
and visual features (FNNA and FNNV) do not outperform FNNL,
LSTMP or BiLSTMP.

In terms of the MAE, further performance improvement was
observed by combining the linguistic and physiological models (late
fusion and ensemble models). The ensemble model FNNL+P+LSTMP
achieved an MAE of 1.041 and a Corr of 0.250.

These results suggest that our proposed physiological signal pro-
cessing method is effective for exchange-level sentiment estimation,
even if linguistic modalities are not included (LSTMP and BiLSTMP).
Compared to the experimental condition, which uses emotional
stimuli, the estimation of self-sentiment in natural dialog is a diffi-
cult task. Nevertheless, our proposed method achieved competitive
performance with an FNN trained on BERT representations (FNNL).
Furthermore, our proposed multimodal models based on linguistic
and physiological information efficiently complement each modal-
ity. These results indicate that our proposed physiological signal
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Table 2: Sentiment estimation results for the Transformer
model and its variant. Tr, Transformer; CMTr, CrossModal
Transformer [27]; TPTr, our proposed Time-series Physiolog-
ical Transformer. “×3”means triplicated Transformer blocks.

Model
EnsembleSingle model Late fusion

with FNNL+P with FNNL+P
MAE Corr MAE Corr MAE Corr

Tr 1.082 0.227 1.057 0.221 1.042 0.259
Tr×3 1.109 0.219 1.069 0.230 1.053 0.257
CMTr [27] 1.083 0.190 1.138 0.198 1.040 0.254
TPTr (ours) 1.114 0.228 1.099 0.223 1.051 0.261
TPTr×3 (ours) 1.068 0.232 1.045 0.240 1.033 0.262

processing method can potentially capture sentiment changes that
cannot be represented by BERT representations alone.

5.2 Performance of TPTr
Table 2 shows the regression performance of the conventional
Transformer model, the CMTr model proposed in [27], and our pro-
posed TPTr model. The single models and late fusion models did not
outperform the abovementioned ensemble model FNNL+P+LSTMP
(Table 1). However, all the ensemble models showed higher per-
formance than the single models. In particular, ensemble model
FNNL+P+TPTr×3 achieved the best results, with an MAE of 1.033
and a Corr of 0.262. In a previous study that used the same dataset
and machine learning task as we presented here, it was shown that
the ensemble model FNNL+P achieved a better performance than
other multimodal models [12]. We show here that our proposed en-
semble model (FNNL+P+TPTr×3) significantly outperforms the pre-
viously reported best model (FNNL+P, 𝑝 < 0.05, Wilcoxon signed-
rank test), suggesting the effectiveness of our proposed method. In
addition, we observed significant performance improvement for the
TPTr×3model compared to the Tr×3model by further experimental
repetitions (𝑝 < 0.05, Wilcoxon signed-rank test).

These results indicate that incorporation of time-series physio-
logical changes into the Transformer language model, which was
achieved with our proposed TPTr model, can capture different rep-
resentations that cannot be captured by using only FNNL or FNNP
or the ensemble model FNNL+P. As shown in Section 3, only the
dot product of the query and key differs between the conventional
Transformer model and our proposed TPTr model, and this dif-
ference can affect the TPTr estimation result. The details of the
attention weight are analyzed and discussed in Section 5.4.

5.3 TPTr Based on Other Submodalities
We investigated whether the TPTr model based on other phys-
iological signals and its ensembles were effective for sentiment
estimation. We evaluate the following models:
(1) Singlemodel:Thismodel is our proposed TPTr×3model, which
was trained on each preprocessed signal from the physiological
submodality 𝛼 , as shown in Section 3. A total of five single models
were constructed.

Table 3: Sentiment estimation results of the TPTr model
based on physiological submodality to explore other effective
submodalities. EDAtonic, tonic component of EDA; EDASC,
skin conductance; BVP, blood volume pulse; HR, heart rate;
TEMP, skin temperature.

Model TPTr submodality MAE Corr

Single model

EDAtonic 1.113 0.225
EDASC 1.115 0.237
BVP 1.080 0.258
HR 1.112 0.232
TEMP 1.100 0.221

Ensemble model
(3 models)

EDAtonic 1.052 0.261
EDASC 1.052 0.264
BVP 1.041 0.269
HR 1.050 0.264
TEMP 1.053 0.259

Ensemble model
(4 models)

EDAfast 1.041 0.268
EDAfast and BVP 1.033 0.276

Human 1.008 0.406

(2) Ensemble of 3 models: The ensemble was constructed using
the FNNL+P (i.e., FNNL and FNNP), and TPTr×3 models trained on
physiological submodalities.
(3) Ensemble of 4 models: The ensemble was constructed using
FNNL+P, and two models selected from Tr×3 or TPTr×3 trained
on physiological submodalities. To compare the conventional Tr×3
model with our proposed TPTr×3 models, two sets of ensembles
were evaluated: FNNL+P, TPTr×3 trained on EDAfast, Tr×3; FNNL+P,
TPTr×3 trained on EDAfast, TPTr×3 trained on BVP.

Table 3 presents the estimation results of the abovementioned
models. Among the five single models based on each submodality,
the TPTr model based on the BVP signal has the best result (row 4
in Table 3). The TPTr model based on the BVP signal also had the
best result for the ensemble of 3 models, with an MAE of 1.041
and a Corr of 0.269 (row 9 in Table 3). Finally, we evaluated the
ensemble of 4 models: FNNL+P, TPTr×3 based on the EDAfast, and
TPTr×3 based on the BVP signal (the second row from the bottom
in Table 3). This ensemble model achieves the best result in this
study, with an MAE of 1.033 and a Corr of 0.276. The ensemble of
4 models including Tr×3 has a worse performance in terms of the
MAE (1.041) than the model without Tr×3 (MAE of 1.033, the last
row in Table 2).

EDAfast is known to be related to emotional arousal, and we
have presented its effectiveness (Tables 1 and 2); however, the BVP
signal could also be useful for sentiment estimation with our pro-
posed framework. Both the EDA and BVP signals are related to
the ANS; however, the EDA signal reflects changes in sweat gland
activity, while the BVP signal reflects physiological changes in the
cardiovascular system. Further improvement was achieved with
the ensemble of 4 models by using the TPTr model based on the
BVP signal; thus, different physiological submodalities may reflect
different aspects of sentiment changes that cannot be explicitly
represented by using linguistic information alone, resulting in the
ensemble of 4 models achieving further performance improvement.
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Figure 3: Example of the attention weights extracted from Transformer (left) and TPTr (center), and the difference between the
two (right). Each square matrix is the attention weight computed from the 𝑄𝑖𝐾𝑇𝑖 (left) or 𝑄 ′𝐾𝑇

𝑖 𝑖
(center, please see equation 3).

The dimension is equal to the total number of tokens including special tokens in one exchange. (a) Example of attention
weights with true negative self-reported sentiment. (b) Example of attention weights with true positive self-reported sentiment.
[C] and [S] indicate special tokens of BERT [CLS] and [SEP], respectively.

On the other hand, other submodalities appeared to have little effect
on the estimation performance. Thus, other time-series processing
or feature extraction methods should be considered for these sub-
modalities to determine whether they contribute to the sentiment
estimation performance.

The last row in Table 3 depicts the sentiment estimation per-
formance by five human annotators (the Cronbach alpha value
was 0.83 for the third-party annotation, indicating the reliability of
the third-party annotation). Our best MAE of 1.033 is close to the
human performance, which had an MAE of 1.008, although there
is still a gap between the correlation coefficients (0.276 vs. 0.406).
Thus, the preprocessing method and neural network architecture
could be improved. We focused on physiological signals in this
study since physiological signals can capture sentiment changes
that cannot be expressed by textual, acoustic and visual features.
The combination of our proposed method and other nonverbal sub-
networks for audiovisual modalities, such as those proposed in [29],
may further improve the sentiment estimation performance; thus,
additional investigations are needed.

5.4 Analysis of the Attention Weight
It is assumed that the incorporation of physiological signals into the
Transformer architecture leads to changes in the attention weights
since time-series physiological signals shift the query from 𝑄 to𝑄 ′

in our proposed module (Fig. 2). Thus, we compared the attention

weights between the Transformer and TPTr models. Test samples
were used to extract attention weights from the learned model.
Fig. 3 shows examples of attention weights with negative sentiment
(Fig. 3(a)) and positive sentiment (Fig. 3(b)) derived from the Trans-
former (left) and TPTr (center) models, as well as their difference
(right). The example shown in Fig. 3(a) has a true self-sentiment
score of 3.00 (i.e., a negative example), and the estimated scores of
the Transformer and TPTr models are 4.01 and 3.69, respectively.
In this example, the segmented Japanese tokens of the system are
“SO/NA/N/DESU/NE/,” (number of tokens 𝑛 = 6), which means
“I got it” in English, and the Japanese token of the user is “HAI/,”
(𝑛 = 2), which means “Yes” or “Well”, which generally functions as
a filler and has a neutral or positive meaning. This ambiguous user
utterance makes it difficult to estimate negative sentiment using
only linguistic information; however, the TPTr model gives less at-
tention to this neutral/positive token and estimates a value of 3.69,
which is close to the true negative sentiment score. Conversely,
the TPTr model pays more attention to user utterances in other
cases, as shown in Fig. 3(b). This example has the system utterance
“Which do you like better, sweet or spicy?” and the user utterance “I
like both” in English. This example has a true self-sentiment score
of 5.00 (i.e., a positive example), and the estimated scores of the
Transformer and TPTr models are 4.21 and 4.81, respectively. Thus,
the TPTr model may change the attention weight more flexibly
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Figure 4: Qualitative example of the estimation pattern of each model. The black line with open circles indicates the actual
sentiment score of a participant during each exchange in a dialog session. Each colored line indicates the estimated score based
on each model during each exchange.

than the Transformer model, which may improve the ensemble
model performance.

Taken together, our proposed TPTr architecture intuitively al-
lows for shifting BERT representations to the physiology-related
subspace, resulting in better estimation performance in the ensem-
ble models. Our proposed models allow physiological information
to be continuously linked to linguistic information and has a fixed at-
tention direction, which is different from the prior works [4, 22, 27].
In the preliminary experiment, other architectural designs of the
TPTr, such as another attention direction, degraded (or at least did
not improve) the estimation performance. Thus, the time-series
physiological signals play a supporting role to the Transformer
based on the BERT representations (denoted as 𝑄 ′

𝑖
in Section 3.2)

by capturing self-sentiment changes that cannot be represented by
linguistic information, although a further thorough investigation is
needed.

5.5 Analysis of the Exchange-Level Estimation
Pattern

To visualize exchange-level self-sentiment changes and differences
in the estimation patterns among the models, an example of the
estimation results during a dialog session is shown in Fig. 4. As
shown by the black lines, the participant’s self-sentiment changes
dynamically during the dialog. Thus, self-sentiment estimation is
a difficult task, and dialog systems should recognize and adapt to
these sentiment changes at the exchange level. In this example,
the conventional FNNL (blue line in Fig. 4, MAE of 0.954) and
FNNP (green dashed line, MAE of 1.077) models cannot dynamically
estimate the participant’s sentiment and perform conservatively
(estimated scores are almost neutral scores of 4). In addition, the
conventional Transformer model (purple dotted line, MAE of 0.715)
is insufficient for estimating positive sentiment, although some
performance improvement is observed. On the other hand, the TPTr
model (red dot-dashed line, MAE of 0.576) is effective in detecting
subtle sentiment changes, particularly positive sentiment changes,
which cannot be achieved by any of the other models presented
in this example. Thus, the TPTr model could represent different
aspects of sentiment changes that cannot be captured by using
BERT representations or conventional Transformer.

5.6 Limitations and Future Works
There is no publicly available dataset that includes exchange-level
self-sentiment labels and linguistic and physiological information
except for the Hazumi dataset used in this study. Thus, we cannot
evaluate our proposed model with another dataset, which will be
considered in future work. Although our proposed method could
contribute toward capturing short-time sentiment changes dur-
ing individual exchanges (i.e., intraframe), our methods do not
consider time-series changes in the overall dialog data (i.e., inter-
utterance). Thus, the effectiveness of representations based on ex-
change sequences and attention mechanisms that capture more
context and physiological changes merit further investigation. Ad-
ditionally, there is a need to investigate effective methods for adding
time-series audiovisual signals into TPTr (i.e., four modalities in
total), and comparison with other SOTA language models such as
RoBERTa [16] is also needed.

6 CONCLUSION
We showed that the model based on our proposed time-series phys-
iological signal processing method has a comparable performance
to linguistic-based models. Furthermore, the TPTr model, which
introduced time-series physiological signals into a SOTA language
model, significantly outperforms the previously reported best result.
Furthermore, we presented that adding the BVP signal into the TPTr
model based on the EDAfast signal resulted in further estimation
performance improvement. It seemed that attention weights based
only on the language modality can be changed by the injection of
the physiological signals into TPTr which capture self-sentiment
changes that are not expressed in linguistic information. Thus,
our proposed framework could be valuable for developing novel
techniques for extracting representations not only from linguistic
modality but physiological modality.
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